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Abstract: Some of the dual formulations of QCD are reviewed and analyzed for their possible implications 

especially in non-perturbative sector of QCD at zero temperature. Starting from the Nambu-Mandelstam idea 

and the ’t Hooft Abelian Projection technique, the effective formulations of QCD like the dual Ginzburg-

Landau formulation and magnetic symmetry based dual QCD formulation have been analyzed in which dual 

magnetic potentials coupled with monopole field act as fundamental variables.  The dual dynamics associated 

with these models is discussed in the quenched approximation and the analysis of symmetry breaking , flux 

tube configurations, confinement potential and nature of dual QCD vacuum is presented which establishes 

magnetic symmetry based dual QCD formulation as a more effective topological viable formulation for 

analysing  the  non-perturbative aspects of QCD. 
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1. Introduction 

 

QCD, a non-Abelian gauge formulation of 

strong interactions is widely accepted as a best 

possible description of the hadronic world 

especially in its high energy sector [1]. 

However, due to the running nature of QCD 

coupling constant, several mystical features like 

color confinement, dynamical breaking of chiral 

symmetry, non-trivial topologies etc start 

popping-up in its low energy regime [2-4]. 

Among all of them, the color confinement is 

one of the outstanding and less known features 

that need to be resolved at the fundamental 

level. There are several models proposed to 

explore the physical dynamics associated with 

color confinement, among which Abelian 

dominance and monopole dominance are most 

leading candidates.   

In the present study, we have made a 

comparative investigation of existing effective  

 

 

models like ’t Hooft Abelian projection model, 

DGL model and magnetic symmetry based field  

decomposition model in the context of color 

confinement alongwith their viability at 

different level of their description. 

 

2. ’t Hooft Abelian Projection 

To resolve the color confinement problem of 

QCD, Nambu,’t Hooft and Mandelstam put 

forward the idea of dual version of microscopic 

theory of superconductivity in which QCD 

vacuum is regarded as a dual superconductor. In 

this picture the color electric flux is expected to 

get confined through the dual Meissner effect as 

a result of color magnetic condensation in QCD 

vacuum. Although, this picture looks quite 

simple, the introduction of color monopoles 

was the major issue in the success as well as a 
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subject of intense debate among physicists. The 

appearance of color monopoles in non-Abelian 

gauge theory was first proposed by ’t Hooft, 

based on the Abelian gauge fixing that reduces 

SU(Nc) non-Abelian gauge theory to U(1)Nc-1 

Abelian gauge theory supplemented with color 

monopoles that may appear as hedgehog like 

configuration corresponding to the non-trivial 

homotopy class on non-Abelian manifold 

Π2{SU(Nc)/U(1)Nc-1}= . This hedgehog 

configuration in the maximal Abelian gauge 

manifest itself as a singular points that 

identifies color magnetic monopoles in terms of 

residual Abelian gauge symmetry. In this 

scheme, the Abelian gauge fixing is expressed 

through the diagonalization of  a gauge 

dependent variable M(x) = Ta Ma(x) (where Ta 

are the generators of the gauge group)[5]. The 

transformation corresponding to the 

diagonalization is, 

M(x)  M’(x) = (x)M(x)-1(x) = Md(x)  

where (x) = exp(iTaχa(x)) is a gauge function 

in SU(Nc) color  space. The gauge in which 

M(x) is diagnolized is called maximal Abelian 

gauge and depends on the choice of scalar field 

M. For  Nc = 2, the Abelian gauge is obtained 

by aligning  Ma(x)  along the third direction in 

color space.  

M → MaTa → M† = ηT3 =   

where η = √(M1
2+ M2

2+ M3
2). 

In this Abelian gauge the gauge field (gluon 

field) can be separated into regular and singular 

parts, 

A=AaTa = Aa
RTa – e-1nφ (1+cosθ/rsinθ)T3           

(1) 

The diagonal component of the gluon field 

acquires a singular form corresponding to the 

points where gauge fixing is ill defined. These 

points appears as topological defects that acts as 

a source of chromomagnetic field with 

associated magnetic charge g = -(4π/e)T3. Thus 

in the vicinity of the points where Abelian 

gauge fixing is irrelevant, the Abelian part of 

the gauge field behaves as if a magnetically 

charge object having charge (g=-4π/e) is 

already existing there. 

Although in t’Hooft Abelian projection 

technique the color monopoles introduced in 

very well defined mathematical order however, 

from physics point of view it suffers from some 

serious drawbacks. In this technique the 

separation of Abelian part is gauge dependent 

which is inconsistent with the fact the gauge 

independency of all natural phenomena’s. In 

addition to this  such reduction of symmetry 

breaks color gauge invariance according to 

Schlieder’s theorem which is another serious 

drawback. Further this formalism also does not 

tell us exactly the actual component responsible 

to bring confining features in the theory. 

 

3. The Dual Ginzburg-Landau formulation 

The DGL formulation is one of the effective 

tool to explain the confining properties of QCD 

vacuum. It is based on dual Higgs mechanism 

and can be deduced from QCD Lagrangian 

considering the fact of Abelian dominance and 

monopole condensation [6].  Monopoles are 

brought into dynamics via Abelian projection. 

In the quenched approximation (absence of 

quarks), we have the DGL Lagrangian as,  

£ = -1/4(∂μBν-∂νBμ)2+ [Dμ, χ]†[Dμ, χ] – λ(χ†χ-

χ0
2)2    (2) 

Where Bμ is the dual gauge field, χ is the 

monopole field and Dμ (= ∂μ + igT.Bμ) is the 

dual covariant derivative and g is the dual 
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gauge coupling constant χ0 is the vacuum 

expectation value of monopole field.  As the 

monopole field χ approaches its vacuum 

expectation value χ0, which then acts as an order 

parameter will spontaneously break the dual 

gauge symmetry of the system and leads the 

QCD vacuum into color electric confined phase 

resulting from dual Meissner effect and 

monopole condensation. In this magnetically 

dominated phase, the color electric interquark 

potential becomes of linearly rising nature that 

confines the color isocharges. In view of the 

above description, the DGL theory of color 

superconductor seems to provide a suitable 

explanation of color confinement through 

magnetic condensation however, the DGL 

Lagrangian is constructed using the assumption 

Abelian dominance and monopole condensation 

but their origin is still lacking here as in the 

earlier proposal made by ‘t Hooft. Monopoles 

being non-static solutions are made explicit as 

reasonably localized particle states by gauge 

fixing (Abelian projection) conditions in the 

theory which reduces the symmetry of 

Lagrangian and breaks color gauge invariance 

[7].   Further the stability issue of the color 

electric flux also demanded serious concern 

over the validity of  the formulation. 

4. Field decomposition formulation based 

on magnetic symmetry 

 

Another effective formulation to explore the 

mystic confining features of QCD is the 

magnetic symmetry based field decomposition 

higher-dimensional formulation of non-Abelian 

QCD. In this model the magnetic symmetry is 

introduced in the theory as an additional  

isometry of the internal space described by a 

Killing vector field and has Cartan’s subgroup 

(H) of the gauge symmetry group (G) as its 

little group. The gauge covariant magnetic 

symmetry condition which restricts and reduce 

the dynamical degrees of freedom keeping full 

gauge degrees of freedom  intact [8-11], is then 

given as, 

Dµ  = (∂μ+gWμ×)   = 0  (3) 

   being a scalar multiplet belonging to the 

adjoint representation of the gauge group G 

leads to an exact solution for the gauge group 

SU(2) and little group U(1) as 

Wμ = Aμ   - g-1(   ×∂μ   )   (4) 

with Aμ = .Wμ, unrestricted by magnetic 

symmetry is Abelian in nature while the second 

term is restricted by magnetic symmetry and of 

topological in origin, since the multiplet   

may be viewed to define the homotopy of the 

mapping П2(S
2) as   :  → S2 = SU(2)/U(1) 

which ensures the appearance of monopoles in 

the theory. The dual structure and dual 

dynamics exist between color isocharges and 

topological charges becomes more evident 

when we express the gauge fields in magnetic 

gauge (   3 = (0,0,1)T) as Wμ  (Aμ + Bμ) 3 

and Gμν = [Wν,μ-Wμ,ν + gWμ×Wν]  

(Fμν+ ) 3. The corresponding Lagrangian 

with built in dual structure (∂μGμν = jν
, ∂μG(d)μν = 

kν), in quenched approximation may then be 

expresses as 

2-

V(ϕ*ϕ)  

(5) 

where V(ϕ*ϕ) = 24π2g-

4[ +(ϕ*ϕ)2{2ln (ϕ*ϕ)-1}]  

is the one loop effective Coleman Weinberg 

potential which is responsible for the dynamical 
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breaking of magnetic symmetry is fixed by the 

requirement of ultraviolet finiteness and 

infrared instability of dual QCD Lagrangian. 

The dynamical breaking of magnetic symmetry 

through dual Meissner effect then leads to the 

monopole condensation in QCD vacuum and 

confines the color isocharges. Consequently the 

associated color electric flux then squeezed in 

the form of thin flux tubes between the color 

isocharges. The field equations associated with 

the Lagrangian (5) are, 

      (6) 

       (7) 

The close resemblance of these field equations 

with relativistic G-L field equations and their 

static vortex line solutions governs the flux tube 

structure inside the QCD vacuum. These field 

equations under cylindrical symmetry (ρ,φ,z) 

along with the field ansatz , 

, ϕ = χ(ρ) exp(inφ) 

leads to the color electric field 

 and reduce the field 

equations in the following form, 

 

 

The asymptotic solution for B(ρ) in suitable 

boundary conditions [9-11] ensures the 

formation of color flux tubes, is given by  

B(ρ) = - [ 1+F(ρ)] and F(ρ)  Cρ1/2exp(-

mBρ)  (8) 

Where C is a constant and mB(=4πg-1 ϕ0) is 

the glueball mass. Thus in nutshell the 

dynamical breaking of magnetic symmetry in 

QCD vacuum leads to the dual Meissner effect 

and sets two characteristic mass scales mB and 

mϕ. The glueball mass mB (which is defined as 

the vector mode) determines the magnitude of 

dual Meissner effect. The inverse of penetration 

depth λ(D) determines this mass. The other scale 

which is characterized by the scalar mode mϕ 

corresponds to the threshold energy to excite 

the monopole in dual QCD vacuum. The 

inverse of this mass ) leads to the 

coherence length ξ(D). The ratio of these two 

length scale determines the nature of dual QCD 

vacuum by evaluating associated DGL 

parameter,  which for the infrared 

sector of QCD (s = 0.22) leads to the type-II 

superconducting behavior (K>1) with multiflux 

tube structure of QCD vacuum. Thus, the 

magnetic symmetry based dual formulation 

nicely incorporates all the relevant degrees of 

freedom to explain the confining behavior of 

QCD vacuum by bringing duality at the 

fundamental level.  

Besides proving Abelian dominance and 

magnetic condensation simultaneously, in this 

field decomposition formulation the gauge 

fixing is actually done at the level of magnetic 

symmetry itself, which reduces the principle 

fibre bundle to a subbundle supplemented by 
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monopoles. It further splits the Abelian part in 

the chromoelectric and chromomagnetic 

components and clearly specifies one that is 

truly responsible for confinement in the theory 

which is quite difficult in earlier formulations. 

Monopole as global aspects of the gauge group 

here manifests itself at the level of particle 

interactions. For dual QCD formulation, being 

an additional isometry, the introduction of 

magnetic symmetry doesn't disturb the gauge 

symmetry of Lagrangian and color gauge 

invariance remains intact. This allows one to 

choose a gauge invariant, parity conserving 

monopole background and provides stable 

monopole condensation necessary for 

confinement as shown in recent Lattice QCD 

simulations [12-15]. Keeping in view the above 

advantages, topologically viable dual QCD 

formulation emerges as a more effective 

formulation for analyzing non- perturbative 

aspects of QCD. The further comprehensive 

investigation in this direction will be dealt in 

our forthcoming communications. 

 

Acknowledgements 

The authors are thankful to the organizing 

committee of APSLS-2018 for their motivation 

and support. The author (DSR) is also thankful 

to University Grants Commission, New Delhi 

for the financial assistance in the form of 

fellowship under UGC(BSR)-RFSMS scheme. 

References 

1. Gross D.J., Wilczek.F, Phys.Rev.  Lett. 26, 

3633  (1973). 

2.  Stack J.D., Wensely and Neiman S.D., Phys. 

Rev. D50, 3399 (1994). 

3. Toki S., Kitahara S., Kiura S., Matsubara Y., 

Miyanmura O., Ohno S., and Suzuki T., 

Phys. Letts. B272, 326 (1991). 

4. Nambu.Y , Phys Rev. D10, 4262 (1974);  

Mandelstam. S, Phys. Rep. C23, 245 (1976). 

5.  Hooft G t’, Nucl. Phys. B190, 455 (1981). 

6. Suganuma H., Sasaki S. and Toki H., Nucl. 

Phys. B435, 207 (1995).  

Ichie H., Suganuma H., Toki  H,  Phys. Rev. 

D54, 3882 (1996). 

7. Schlieder.S, Nuovo Cimento 63A , 137 

(1981). 

8. Cho.Y.M.   Phys.Rev.  D21, 1080 (1980). 

9. Pandey H.C, Chandola H.C, Phys. Lett. 

B476, 193 (2000). 

10. Chandola H.C., Yadav D., Pandey H.C., 

Dehnan H., Int. J. Mod. Phys. A20, 2743 

(2005). 

11. Chandola H.C. and Yadav D., Nucl. Phys. 

A829, 151 (2009). 

12. Kronfeld A., .Sheirholz J., Nucl.Phys. B293, 

461 (1987); Phys.Lett.  B198, 516 (1987). 

13. Brandstater F., Sheirholz G., Phys.Lett. 

B272, 319 (1999). 

14. Kato S., Kondo K.., Murakami T., Shibata 

A., Shinohara T., Ito S., Phys. Lett. B632, 

326 (2006).  

15. Cundy N., Cho Y.M., Lee W., Leem J., 

Phys.Lett. B729, 192 (2014), Nucl. Phys. 

B895, 64 (2015). 

 

 

 

******

 

https://doi.org/10.51220/jmr.v19i1.15
http://jmr.sharadpauri.org/

